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Structure of atypical representations of the 
Lie superalgebras sl(m/n) 

Joris Van der Jeugtt 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, 
89000 Gent, Belgium 

Received 1 November 1985, in  final form 9 J u l y  1986 

Abstract. In contrast to Lie algebras, Lie superalgebras contain typical and atypical 
irreducible representations. Character formulae for typical representations of classical Lie 
superalgebras have been known for a long time, but the structure of atypical representations 
remained unsolved. In this paper we construct the character formula for atypical representa- 
tions of the special linear Lie superalgebras sl(m/n). 

1. Introduction 

Since the work of Corwin et af (1975), Lie superalgebras have become increasingly 
important in theoretical physics. We only mention their evidence in supersymmetry 
(Fayet and Ferrara 1977), supergravity (van Nieuwenhuizen 1981) and nuclear physics 
(Iachello 1980) here. Simple Lie superalgebras were classified completely (Kac 1977, 
Scheunert 1979) and it was shown that classical Lie superalgebras can be described 
by a Cartan matrix or, equivalently, by a Kac-Dynkin diagram. 

Finite-dimensional irreducible representations (irreps) of Lie superalgebras were 
studied by Kac (1978) and categorised as being either typical or atypical. Typical 
representations have properties analogous to those of finite-dimensional irreps of Lie 
algebras and are relatively easy to handle. Kac (1978) constructed a character formula 
for typical irreps of classical Lie superalgebras. Atypical representations are much 
harder to deal with. Various techniques have been used in order to get a deeper insight 
into the structure of atypical representations, but still no completely general character 
formulae exist. Among the techniques used we mention methods based on superfields 
(Farmer and Jarvis 1983, 1984), tensors and supertableaux (Balantekin and Bars 1981, 
1982, King 1983), shift operators (Hughes 1981, Van der Jeugt 1984, 1985a), weight 
spaces (Hurni and Morel 1982, 1983) and generating functions (Sharp et ai 1985). 
Atypical representations are important for several reasons. Firstly, adjoint representa- 
tions of Lie superalgebras are usually atypical. Secondly, it was shown recently (Van 
der Jeugt 1985b) that the phenomenon of multiplet shortening in supergravity models 
(Freedman and Nicolai 1984) is explained by the structure of atypical representations 
of the underlying superalgebra. 

In the present paper, we study finite-dimensional atypical representations of the 
Lie superalgebras s l ( m / n ) ,  sometimes denoted by SU(m/n) ,  spl(m, n) or A(m - 1, 
n - 1). The main result is the construction of a character formula for atypical represen- 
tations, given by (4.31) when precisely one of the atypicality conditions is satisfied. 

* Senior Research Assistant NFWO (Belgium). 
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810 J Van der Jeugt 

The outline of the paper is as follows: in § 2, the algebra is defined and the Chevalley 
basis is constructed. I t  is also shown how the atypicality conditions are derived. In 
§ 3, a very useful theorem is proven, which shows the existence of a special highest 
weight vector in the Verma module Q(A),  if A corresponds to the highest weight of 
an atypical representation. This property is used in 0 4 in  order to obtain the character 
formula for atypical representations of s l (m/n) .  Section 5 gives an example for 
L = s1(3/2). 

2. Conventions and notation for sl(mln) 

I n  matrix notation, the standard form of the Lie superalgebra s l (m/n )  is defined as 
follows (Kac 1977): 

I sl(m/n) = { x = (: i) 1 str x =Tr a -Tr d = O  

where a is a complex ( m  x m )  matrix, b a ( m  x n) matrix, c a ( n  x m )  matrix and d 
a ( n  x n )  matrix. The Lie superalgebra sl( m /  n )  is simple if m # n. If m = n, it contains 
the non-trivial ideal C Z2,,,, and then s l ( n / n ) / C  Zzm is simple. In this paper, we shall 
prove the results only for m # n, but they can easily be deduced for m = n. The even 
subspace of sl(m/n) is the space for which b and c are zero and the odd subspace 
consists of matrices with a = 0 and d = 0. 

Let eij be the matrix with entry 1 in the ith row andj th  column, and 0 elsewhere. 
We set 

m 

I, = C eii (2.2) 
i=l 

m + n  

I n  = c ell. 
i = m + l  

The Cartan subalgebra H of s l (m/n )  is spanned by 

h , = e , , + ( l / n ) L  
hm+i  = ( l / m ) I m + e m + l , m + l  ( i = l ,  . . . ,  n )  

ho= ( l /m)Zm + ( l / n ) l n .  

(i = 1, . . . , m )  

Only ( m  + n - 1) of the elements (2.4) are independent since 

f h,-mh,=O 
1 = 1  

(2.3) 

(2.4) 

H is contained in the set of diagonal ( m  x n ) x ( m + n )  matrices D =  
{ d  =diag(d, ,  , . . . , dm+,,m+n)} and the linear forms E ,  ( i =  1, .  . . , m )  and 8, ( j =  
1 , .  . . , n )  are defined as follows: 

(2.6) 

The same notation is used for the restrictions of ei and 8, to H. Then, the following 
relations can be checked for i = 0,1, . . . , m + n :  

[hi, e j k ] = ( E j - E k ) ( h i ) e j k  1 s j ,  k s m 
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[ht, em+,,nr+hl = (8, - 6 k ) ( h i ) e m + , , m + h  

e ~ . m + k l  = -6h)(h!)e, ,m+k 

l s j , k d n  

1 6  jd m, 1 s k s n 

l s j s n , l d k s m .  

(2.7) 

[hi, em+, ,k l=  ( - E L  + a,)(h,)em+,,k 
This shows that the even (resp odd) roots are given by 

A,, = { E ,  - E ~ (  1 dj, k d m ) ,  6, - 6,( 1 s p, q s n)} 

(resp A I  = { * ( E ,  - 6,)( 1 sj  4 my 1 s k d n)}). 
(2.8) 

A set of simple roots is given by 

(cy1 ) . . . ,  c y m t n - l ) = ( E l - E 2  ) . . . )  E , - I - E , , E m - 6 1 , S I - 6 ~  ) . . . ,  (2.9) 

where cy, = E, - 61 is the only odd simple root. The root vectors E, and F, corresponding 
with a, and -al ,  respectively, are equal to 

El = e , , + ,  Fl = e,+,,, i =  1 , .  . . , m - 1  

E m  = em., + I F m  = em+l,m (2.10) 

E m + ,  =em+t,m+i+l F m + i  = e m + r + l , m + i  i =  1 , .  . . , n -1. 

Then we have 

[ E , ,  51 = 4,H, (2.11) 

with 

Hi = h, - h,+l i = l , , ,  . ,  m - l , m + l ,  . . .  , m + n - 1  
(2.12) 

H ,  = h ,  + h,+I - ho.  

The Lie superalgebra s l ( m / n )  is generated by the set { H i ,  E i ,  Fi} (1 d i s m + n - l ) ,  
and the generators satisfy 

with 

c = [ c. . ]  = 

[ H i ,  Ej] = cUEj [ H i ,  F , ]  = -CO? (2.13) 

\ I m I  m + n - 1  

.- 
t m  (2.14) 

I I  
I I  -1 2 , t m + n - 1 .  

The non-degenerate supersymmetric bilinear form (x, y )  = str(xy) on sl( m /  n)  is still 
non-degenerate on H, and hence induces a non-degenerate bilinear form ( , ) on the 
dual space H*: 
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where a,, or fiL, is the Kronecker symbol. 
Note that (2.9) determines the positive roots, namely 

A 0' = { El - Ek (1 cj< k s  m), 8, -aq(1 c p  < qc n)} 

A: = { E ]  - 8 k  (1 S j  S m, 1 S k S n)}. 

Hence, in the notation of Kac (1978) 

ii: = AT. 

As usual, p is defined by 

which gives explicitly 

Furthermore, if A E H*, we set 

a, = NH,) i =  1 , .  , . , m + n  - 1 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

With every A E H*, an  irreducible module V(A) with highest weight A is associated 
as follows. First, the elements { Hi, Ei} (i  = 1, . . . , m + n - 1) generate a Bore1 subalgebra 
B of si (m/n) .  Then, (U,,) is a one-dimensional B module by 

(2.21) 

Following Kac (1978), we set P(A)  = Indk(v,) (with L =  sl(m/n)) and  V(A) = 
c ( A ) / I ( A ) ,  where I ( A )  is the unique maximal submodule of Q(A). Kac proved that 
all finite-dimensional irreps of s l (m/n )  are of type V(A)  and that V(A) is finite- 
dimensional if and only if 

ai E Z, for i # m. (2.22) 

In general, an irreducible highest weight representation V(A) is typical if 

( A  + P, P 1 # 0 vp E A;. (2.23) 

Making use of (2.15), (2.18) and (2.20), we deduce that 

( A  + p, E ,  - 8,) = a, + a,, , + . . . + a, - a, +, - a, +* - . . . - a, + j  - + m - 1 - j  + 1 

( 1 s  1s m, 1 S j s n ) .  (2.24) 

These expressions give rise to the atypicality conditions for s l (m/n)  = A(m - 1, n - 1). 
For finite-dimensional typical representations, a character formula is well known (Kac 
1978). In the following sections, we shall obtain a character formula for atypical irreps. 
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3. Existence of an eigenvector of B 

In the present section we shall prove that if ( A  + p, /3) = 0 for a certain /3 of a:, then 
there exists a weight vector u , , - ~  of f ( A )  such that u h - P  is an  eigenvector of B. The 
proof is very simple for p = a,, the unique odd simple root. 

Lemma 1 .  There exists a weight vector w , , ~  of F(A) ,  with corresponding weight 
A - a, = A - ( E ,  - c?~),  such that 

(3.1) 

ProoJ: Let w , , ~  = F,u,. This is a weight vector with weight A -  a,, and  for i # m we 
have 

E,w,., = F,E,u, = 0 

whereas for i = m 

E,w,,, =(-F,E,+H,)v,=a,v,. 

A similar property for the roots E ,  - 6, ( j  = 2, .  . . , n )  of is given in lemma 2. The 
proof of lemma 2 is more technical, although we only make use of the generating 
relations (2.11) and (2.13). 

Lemma 2. For j E (2 , .  . . , n}, there exists a weight vector w,,, of F ( A )  with weight 
A - E ,  + S I ,  such that 

E8wm.j = 0 V i #  m 

E,w,,, = (a, - a,,, - . . . - a,+, - I - j  + 1 ) wfm.,-, 

where w L , , - ,  is a weight vector with weight A - S l + 6 , .  

(3.2) 

ProoJ: First, we check the result for j = 2. We put 

x = F m F m +  1 v 1 Y=Fm+,FmV,. (3.3) 

Obviously, E,x = E,y = 0 for all i f m, m 4 1. For i = m + 1, we find, making use of 
(2.11), (2.13) and (2.21), 

(3.4) 
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and F m + , v ,  is a weight vector with weight A - 6 , + 6 , .  Moreover, we introduce the 
following notation: 
if 
then (3.6) 
where c,, ,, are polynomial functions in a , ,  . . . , u , , , + ~ - ~ .  Hence, w+ is deduced from 
w by increasing all the a, and F, indices by 1. With this convention, we see that 

(3.7) 
Lemma 2 is proven in the case j = 2. For j > 2, we shall prove the property by means 
of induction on j .  Hence, we may start from the following induction hypothesis: 
( 2 ~ j ~  n-1). 

w = C  c,, r l ( a l , .  . . , am+n-2)Fi,E2. - .  F,,v, (all ik s m + n - 2 )  

w + = c  c,, , , ( a 2 , .  . . , a m + n - ~ ) F , , + ~ .  . F,,+IvA 

Emwm.r= ( a m  - a m + ,  - l )w+, , I .  

Let 

wm,J = Ak(am+l, * * 3 am+j-l)pk(Fm, Fm+l 9 .  * * 1 Fm+J-l)v4. (3.8) 
( k )  

Here, k belongs to a subset S of the set P = (a1 U is a permutation of ( m ,  m + 1, . . . , m + 
j - 1)). In order to describe S, let = be the equivalence relation on P defined by 

g 1 ~ ~ 2 e  F u , ( m ) ' . . F u , ( m + , - l ) = F ~ ~ ~ m ) . .  . F o l ( m + , - l )  in U(sl(m/n)).  (3.9) 
Then S is the set of equivalence classes in P for the relation =; when an equivalence 
class is represented by a particular representative, S can be seen as a subset of P. 
Since [F', F,]=O if q # p *  1 in sl(m/n), we see that the cardinality of S equals 2J-' 
(whereas the cardinality of P is, of course, j ! ) .  For k E  S, F k ( m l F k ( m + l ) .  . . Fk(m+,-l) is 
denoted by Pk(F, ,  F , + , , .  . . , F,+J_I)  and A k ( a , + , , .  . . , u , , , + ~ - ~ )  is the corresponding 
coefficient which is a polynomial in a,+, , . . . , a,+,-, . The vector (3.8) satisfies the 
following properties: 

Eiw,,j = 0 V i #  m 

E,w,,j = ( U ,  - U,,,+, - . . . - U,+,-, - j  + 1) w : , ~ -  I .  
(3.10) 

This describes the induction hypothesis completely and it is easy to verify it for j = 2 .  
Now we will prove the property for ( j +  1). For this purpose, define, in a similar 

way as in (3.3), 
X = F,wLj 

= F m  1 Ak(am+2, * * am+j)pk(Fm+l, . .  . 9 F m + j ) v . h  (3.1 1) 
k 

Y'C Ak(um+2,. . ' , a m + j ) P k ( F m + l , . . . ,  Fm+j)Fmv,\ 

Then, for i f m ,  m + l ,  
EiX = F,EiwLj. 

However since i > m + 1, Eiw+, is equal to ( Ei- ,  wmj)+ ,  which vanishes according to 
(3.10). Hence 

(3.12) 
Making use of the explicit form of X ,  the action of Ei implies that all F, are replaced 
by Hi: 

EjX = 0 for i # m, m + 1. 

0 = EiX = Fm C A k  ( % + 2  9 * * 3 a m + j  )pk ( F m +  I 3 . . . I  Hi, * . ., Fm+j) 
k 

i # m, m + 1. (3.13) 
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In (3.13), H ,  is substituted by its eigenvalue (a ,  + c), where the number c is 0, 1 or 2, 
if no, one or both of the operators F , - , ,  F,+, are placed behind H, in the explicit form 
of pk, respectively. But then ( i  # rn, rn + 1) 

EtY=CAk(am+z, .  . . ,  am+,)pk(Fm+l,...,H,,.. . , F m + J ) F m U . \ = O  (3.14) 

because H, is substituted by the same eigenvalue, since [ H , ,  F,] = 0. Now, consider 
the case of E, = E , , , .  Obviously 

k 

E m  + I X = F m  E m  + I w Lj * 
The vector E,+,wL+, is not equal right away to (E,w,,)', since the mth row of the 
Cartan matrix C (2.14) differs from the next rows. But that E,+,wL,, is still related 
to (E,w,)+ can be seen as follows. 

(i) In order to compute E,+,wLJ,  all F,+, in wLJ are replaced by H,+,  and then 
H,+,  is substituted by a,+, - c,+,,,+~ = a,+, + 1 if Fm+2 appears behind If,+,, and 
by a,+, otherwise. 

(ii) In order to compute E,w,,, all F, in wmJ are replaced by H ,  and then H, is 
substituted by a, - c,,,+, = a, - 1 if F,+, appears behind H,, and by a, otherwise. 
Hence, if we take E,wmJ, replace all a, by - a m ,  then change the signs of all coefficients, 
and finally increase all indices by 1 ,  we must obtain E m + l w i , .  But EmwmJ is given in 
(3.  lo), hence 

(3.15) E m  + 1 w LJ = ( a m  + 1 + a, +z + . . . + a, +, + j - 1 ) w L: - 1 

or 

E,+,X = (a,,, + am+2 + . . . + a,+j + j - 1 )F,wL:,- ,. (3.16) 

Then we find 

The expression on the right-hand side of (3.17) is the same as in the one for E,+,X,  
but with F, placed at the end. This implies that, compared to E,+,X,  all a,+, are 
replaced by a,+, - c,+~,, = a,+, + 1 .  This leads to 

(3.18) ++ 
E m + ,  Y = ( a m +  1 + a m + ,  +. - . + am+,  + j ) F m w m , , - l .  

Hence, if we put 

Wm.,+I =(a,+,  + am+2+.  . .+a,+, +j )X - (a ,+ ,  + am+2+.  . .+a,+, +j - 1 )  Y (3.19) 

w,,,~+, is precisely of the form (3.8) with j + j + l ,  and from (3.12), (3.14), (3.16) and 
(3.18) we see that 

E,wm,j+, = 0 V i #  m. (3.20) 

Finally, since 

E,X=H, , ,WL,=(U,-~)WL,  

and 

E m  y = A k ( a m + 2  9 . * * 9 am+,  )pk( F m + l ,  . . . 9 F m + j  ) H m v . \  = amw;, 
k 



816 J Van der Jeugl 

we find 

E,,,w,.,+I =[(a,,,+, +a,+*+. . .+a,+, + j ) ( a ,  - 1 )  - ( a m c l  +. . .+a,+, +j- l ) ~ ~ ] w L , ,  
- - ( a m - a m + l - .  . . - a m + , - J ) w + ,  (3.21) 

and obviously w;, is a weight vector with weight A - 6 ,  + S I + ,  . 

In the next lemma, the property (3.2) will be extended for the case of weight vectors 
with weight A - ( & , - - S , )  with l s l s m - 1 .  

Lemma 3. For 1 E { 1, , . . , m} and j E { 1, . . . , n}, there exists a weight vector wb of C(A)  
with weight A - E ,  + Sj ,  such that 

where w,+,, ,  is a weight vector with weight A - & / + , + S ,  for I <  m. 

Proof: From lemma 2 we see that (3.22) is true for 1 = m. Hence we will prove lemma 
3 by induction on 1. Thus, we may suppose that there exists a vector wb of the following 
form: 

WO = AkPL.(Ff, F / + l , .  9 Fm+j-l)uZ (3.23) 

such that (3.22) holds. Herein, hk is a coefficient dependent on a,+, , a,+,, . . . , a,+,-,. 
We put 

( k )  

(3.24) 

Then, for i # I ,  1 - 1 ,  we find that 

E , x =  F/-IE,w,, = O  (3.25) 

and in a similar way as in the proof of lemma 2, this implies 

E,y = 0 f o r i # I , I - l .  (3.26) 

Next, we take E, = E,.  Then the induction hypothesis leads to 

E,x  = (a,+ a,+, +. . .+a, - a,+, -. . . - a,+,-I + m - 1  - j +  1 )  Ff -Iwl+l ,J .  (3.27) 

Similarly as in (3.17)-(3.18), we see that Ely can be deduced from Elx by replacing 
a, by a, - c , , ~ - ,  = a, + 1. Hence 

E,y = (a,+ a,+, +. . .+a, -a,+, -. . .-a,+,-, + m - I  - j+2)FI- ,w,+ , , , .  (3.28) 

So, we define 

w,-],, = ( a / + .  . .+a, -a,+, -. . .-a,+,-, + m - I - j + 2 ) x  

- (a ,+ .  . .+a, -a,+, -. . . - a,+,-, + m - 1- j+ 1)y. (3.29) 

Then,also E,w,-,,,=O,andsince E , - , x = H ~ - , w , = ( a , _ , + l ) w ~  and E l - l y = a l - , ~ O , o n e  
obtains 

I?,-, w,-, , ,  = (a,-l +a ,  +. . .+a, -a,+, - .  . .-a,+,-, + m - I - j +2)w,. (3.30) 
This proves lemma 3. 
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Theorem 1. Let P E ~ T = A T .  Then ( A + p , P ) = O  if and only if there exists a weight 
vector u , - ~  of ?(A) with weight A - P  such that u , - ~  is an eigenvector of the Bore1 
subalgebra B. Moreover, such a vector u \ - ~  is unique (up to a non-zero factor). 

Boo$ If ( A + p ,  P )  = 0 then (2.24) and the previous lemmas show the existence of a 
vector U,-@ with the required properties. On the other hand, let u \ - ~  be a weight 
vector, which is an eigenvector of B. Since P E AT, we can put P = E ,  - 8, (1 s I S  m, 1 s 
js n). Then, the most general form of a weight vector in ?(A) with weight A - @  is 
equal to 

(3.31) 

with pk arbitrary coefficients and ( k )  belonging to the subset S of permutations of 
( I ,  I +  1 , .  . . , m + j  - l ) ,  as described in the proof of lemma 2. Since u \ - ~  is an eigenvec- 
tor of B, we have to require that E t ~ , - p  =0,  for all i. But 

E , u + ~  = O  for i = l + l ,  l + 2 , .  . . , m + j - 1  (3.32) 

are precisely the conditions that determine the coefficients pk (up to a factor), as can 
be seen from the proof of lemmas 2 and 3. Hence, pk = C h k  for all k and U\-@ = two. 
This shows that u , - ~  is unique and 

E/u,-p = ( A + P ,  P ) u '  (3.33) 

implies that ( A + p ,  P )  = 0, since u , - ~  is an eigenvector of B. 

Note that theorem 1 can partly be deduced from theorem 3 of Kac (1978). The main 
difference, however, is that we have given an explicit construction of the vector u , - ~ .  

4. The character formula for atypical representations 

Let W E  W be the elements of the Weyl group of s l (m/n )a=s l (m)Os l (n )O@.  Then 
the character of a typical finite-dimensional irrep is given by (Kac 1978) 

Here, exp(a )  is the notation for the formal 
{ & , - a j  ( i =  1,.  . . , m ; j =  1 , .  . . , n)}, we may denote this 
Also, since 

exponential. Since A: = 
set by A: = { P I ,  Pz ,  . , P m n l .  

mn 

P I = +  c PI 

1 = I  

the following equality holds: 

ll [ ~ X P ( P , / ~ ) + ~ X P ( - P ~ / ~ ) I  = exp(p,)+ 1 exp(p, - p f )  
mn mn 

i =  1 i = l  

+ C C exp(pI -0, - P , ) + .  . .+exp(-p,) .  
Is t< lGmn 

(4.2) 

(4.3) 
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On the right-hand side of (4.3) there appear (mn + 1) parts with, respectively, 1, mn, 
mn(mn - 1)/2, mn(mn - l ) (mn -2)/3!, . . . , 1 term(s). The (k+ 1) part in (4.3) is of 
the form 

c exp( p1 -PI, - P I ,  - . . . - P I ,  1. (4.4) 

Since w (  p I )  = p1  (see Kac 1978, proposition 1.7c), A: is invariant under W and W 
acts transitively on AT, we find that 

(4.5) 
for any element w E W, where the summation in (4.5) is the same as in (4.4). Hence, 
(4.3) is W invariant. Then, combining (4.1)-(4.5), one obtains 

1 s t l < r 2 (  < t A s m n  

C exp( pI -PI,  -. . . - P ! , )  = C exp( p1 - WI,) -. . . - w( P ~ ,  ) )  

ch n [exp(a/2) -exp(-a/2)1 
(IEA(: 

(4.6) 

Expression (4.6) contains 2"" non-zero sl( m)Osl(n)  characteristics if and only if all 
A - P .  I I  - . . . - p i ,  correspond to highest weights of sl(m)Osl(n),  i.e., if and only if 

all ai L n 

all ai  5 m 

for 1 s is m - 1 

for m +  1 s i s  m + n  - 1. 
(4.7) 

In that case, it follows from (4.6) that the irrep V(A) splits in 2"" irreps of the Lie 
subalgebra sl(m)$sl(n). 

Since sl(m/n) is a Lie superalgebra of type I, we have the following Z gradation: 

where Lo= La and L, (resp L-,) is the subalgebra of s l (m/n)  spanned by the matrices 
(8 ,") (resp (% 8)) in (2.1). Put 

(4.9) 
Let A be a weight such that it is dominant integral for the Cartan subalgebra of 
sl( m)Osl(n) .  Then A determines unambiguously an La module V(A) which is irreduc- 
ible and finite dimensional. We extend V"(A) to a P module by putting L+,( V"(A)) = 0. 
Then we define, following Kac (1978), the induced L module 

(4.10) 
Under these conditions, v ( A )  is finite dimensional and it contains a unique maximal 
submodule F(A) such that 

(4.11) 
Now we make use of the following property (Kac 1978, proposition 2.l.c). 

Proposition 1. Let H =  L be a subalgebra of L containing La and g , ,  . . . , g,  be odd 
elements of L whose projections onto L/H form a basis. Let Z be an H module. Then, 
one has the vector space decomposition 

s l (m/n)  = L- ,OLoOL+,  (4.8) 

P = LOO L, . 

v( A )  = Ind k p( A) .  

V (  A )  = v( A)/  r( A) .  

IndbZ = @ gil . . . , gis Z .  
I4 i l <  ... c 1 ~ 4  I 

(4.12) 
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We can apply this for H = P and Z = P ( A ) :  

V ( A ) =  @ gil * * gi,VO(A) 
l e i l < .  . . < i , S m n  

(4.13) 

where gi is a root vector of the root space L-'#. The character of P ( A )  is given by 
Weyl's character formula. Hence (4.13) implies 

Making use of arguments as in (4.4)-(4.9, this leads to 

ch V(A) n [exp(a/2) -exp(-a/2)] 
aeAA 

(4.14) 

(4.15) 

Note that the right-hand sides of (4.6) and (4.15) are equal, but (4.6) is valid only for 
typical weights A, whereas (4.15) can also be used for atypical weights (in both cases 
A is the dominant integral for sl( m)@sl( n)). In fact, this shows that ch V(A) = ch V(A) 
for A typical, which is obvious, since Kac (1978) proved that in this case V(A) = V(A). 
When A is an atypical highest weight, V(A) will not be irreducible, and then the 
question is: what is the maximal invariant subspace of V(A)? 

Obviously, V(A) is also an Lo module and, according to (4.15), it splits in 2"" parts 
with highest weights given by A -PI, - . . . -PI, (1 d il < . . . < ik G mn) .  Let S be the set 
of sequences s = ( i l  , . . . , i k ) :  

s={s = ( i l , .  . . , ik ) l l  s i l  <. . . < ik s m n } .  (4.16) 

With every element s of S there corresponds a weight A, under the mapping U : S + 

H* : s + A <  = A - PI ,  -. . . - Plk .  The elements A , ( s  E S )  are called the weights of S. 
Note that S contains 2"" elements, but to different elements of S there may correspond 
equal weights (for instance, if P I  +PJ = Pk + P I ) .  The weights of S are dominant (and 
hence correspond to highest weights of irreducible finite LG modules) if (4.7) is satisfied. 
From now on, we shall suppose that this is the case. Let u",(s E S )  be the highest 
weight vectors of the Lo modules V"(A5). Since these highest weight vectors are 
elements of V(A), they can be written in the following form: 

= E  g,, * ' '  g,!.Q(J,@U\ s = ( i l r . .  . , i k ) .  (4.17) 

Here, the summation is over certain root vectors g,, , . . . , g,, (corresponding to negative 
odd roots -P,, , . . . , -&) and elements Q,) E U( La) with weight -Z nu&( (Y E A:, na 2 
0) such that 

(4.18) 

is satisfied. Note that due to (2.8) the number of odd roots on both sides of (4.18) is 
always the same. Also, (4.17) always contains a non-vanishing term of the form 

Let us now consider the situation in which precisely one atypicality condition is 

PI, + . . .+PI, = P,, + . . . + fl,, + Z  naa 

g,, . 9 . g,, 0 0 4 .  

fulfilled: 

(4.19) 
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Then theorem 1 shows the existence of a B eigenvector u \ - ~ , ,  of q ( A ) :  
u"\~, ,  = R 0 U, R E U( L). (4.20) 

In fact, an explicit construction of R has been given in § 3 .  Note that R can be written 
in the following form: 

(4.21) R = g ,  + g,, Tal + g,,, T- ,, T- ,i + . . . 
where a , ,  a { ,  a ; ,  . . . E  A;, T, are the corresponding root vectors and 

p, = p, + a ]  = p, I + a ;  + a ;  = . . .. (4.22) 

It is obvious that U O \ - ~ , ,  can be identified with an element of V ( A ) ,  also given by (4.20): 

U " \ ~ , , E  V(A).  (4.23) 

The weight A-p, determines an  La module V o ( A - p p )  with highest weight vector 
u , , - ~ , .  Then, just as in (4.10), v ( A - P p )  is well defined. The L module V ( A - p p )  
splits into a number of irreducible La modules: 

V(A-P,)=X,@. . . O X ,  N = 2"'". 

Let xk  be the La highest weight vector of X k .  The weight of xk  is of the form u ( s k )  - p, 
for some sk E S. Suppose sk = ( i l ,  . . . , i,), then the analogue of (4.17) is 

(4.24) 

We define a mapping A from the elements xk in (4.24) to V(A)  by replacing u , - ~ ,  by 
R 0 U, on the RHS of (4.24). Then A is extended to elements of the form qxk, q E U(L6) 
by putting A ( q x k )  = q ( A x k ) .  In  this way, A is defined for all elements of V(A-p, , ) .  
Also, every element of V(A - p,) can be uniquely written as a sum of elements of the 
form qxk. 

x k  =c g,, . . ' gj,QIj)@UZ-Pp. 

Lemma 4.  The mapping A :  V ( A - p , , ) +  V(A)  satisfies the following properties: 

then x Au = Au'; 
(a )  it is a homomorphism of L modules: if U, U ' E  V ( A - p , ) ,  X E  L and x '  u = U ' ,  

(b)  xk with weight u ( s k )  - p, is mapped into the zero vector if and only if u ( s k )  - 
P,  iz 4 s ) .  
Proof: It is enough to prove (a )  for elements of the form U = qxk, q E U(L6). But for 
such elements (a) follows from the fact that u , , - ~ ,  is a highest weight vector for L and  
the definitions of V ( A - P p )  and V(A).  As a consequence, A preserves the weight of 
weight vectors. To prove (b), let sk = ( i ,  , . . . , i,) and (T(sk) - p p  g a(S). According 
to (a), Axk must be a highest weight vector for La. But all highest weight vectors for 
Lo contained in v(A) are given by u s , .  Hence m ( s k ) - p p g  a ( S )  implies Axk = O .  
Conversely, if a( sk) - Pp E a( S), then p E { i l  , . . . , i,}. Now xk contains a unique term 
of the form gil . . . ~ , , O U ~ - ~ ~ .  Hence, according to (4.19) Axk contains a unique term 
of the form 

gi, . . - gqgpO V A  

which shows that Axk # 0. 

The image of Q(A-p,) under A, ImV(A-pp)  = J(A-P,,), is a submodule of V(A) 
with highest weight A-P, .  From lemma 4, it follows that the La components p ( A )  
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of J(A-p,,) are those for which A E u ( S )  and for which A is a highest weight of an 
La module contained in v ( A  - p, 1. Hence 

ch J ( A  - P,) n [exp(a/2) -exp(-a/2)1 
O € A ;  

I l fp,  .... l k f P  

Any other submodule of v ( A )  must have a highest weight from S. But from theorem 
1 i t  follows that no weight vector of V(A)  with weight A - P I (  i # p )  can be a highest 
weight vector for L, and from Kac (1978, theorem 3b) one can conclude that no other 
weights of the form A -PI, - . . . - p,, ( i ,  # p ,  . . . , ik # p )  correspond to highest weight 
vectors for L. Hence 

J ( A ) = J ( A - ~ , ) .  (4.26) 

Then ch V(A) = ch v(A) - ch J ( A  - pp),  or explicitly 

ch V(A) n [exp(a/2) -exp(-a/2)1 
a € A ;  

= c E ( W )  exp[w(A+p,)l+ 
W E  w 

(4.27) 

We shall now obtain a more convenient form of (4.27). For this purpose, let wl  be a 
fixed element of W and consider in all the parts of (4.27) the term with w = w I .  This 
is equal to 

The right-hand side is 

(4.29) 
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But wl(p l )  = p I  and I I [ e x p ( P i / 2 ) + e x p ( - p i / 2 ) ]  is W invariant. Hence, (4.29) equals 

(4.30) 

Combining the previous results, we find the following. 

Theorem 2. Let A be the highest weight of an atypical representation for which the 
conditions (4.7) and (4.19) are fulfilled. Then 

ch V(A) n Eexp(a/2) -exp(-a/2)1 
a€A; 

(4.31) 

where Wpi = {w E W I w( p,) = pi} andhis written above the factor to be deleted. 

Note that (4.31) coincides with expression (2.11) of Sharp et a1 (1985) in the case of 
sl( m/ n). 

We have tried to find a similar expression for representations where more than one 
atypicality condition is fulfilled, but have not obtained a satisfactory result. 

5. Example 

In this section we shall give an example of an atypical representation of the Lie 
superalgebra L = s1(3/2). In particular we shall consider a representation with highest 
weight A which is ‘low lying’ (this means for which (4.7) is not fulfilled). Although 
the proof of (4.31) only works for highest weight representations satisfying (4.7), the 
following example indicates that (4.31) may be true for all single-atypical representa- 
tions. 

The simple roots of s1(3/2) are, in the same notation as 0 2, 

E l  - E2 E2 - E 3  & 3 - - 1  S I - & .  

For A E H*, the labels of A are ( a , ,  a2,  u 3 ,  a,) with 

a, = A ( H i ) .  

A = ( a ,  +a,+ a3 - a 4 ) ~ ~  + ( a 2 +  a3 - a4)E2+ ( a 3  - a,)&,+ G a l .  

( E 1  + & 2 +  E j )  - (6, + 62) = 0. 

(5.2) 

Then one can express A as follows: 

(5.3) 

Note that the following equation holds in H*: 

(5.4) 

The elements P, of A: are determined by 

( P i ,  P 2 , .  . * , P 6 )  = ( E l  -81, E1 - 82, E 2 - 6 ,  I E 2 -  8 2 ,  E3 - 6, I E3 - 62). (5.5) 
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In this order, the six atypicality conditions are 

a ,  + a, + a3 + 2 = 0 (1) 
(2) a , + a , + a , - a , + l  = o  
(3) a , + a , + l  = O  

(4) 
( 5 )  a, = 0 

a,+ a3 - a4 = 0 

(6) a,-a , - l=O.  

The even part of s1(3/2) is s1(3)Os1(2)Ou(l). In general, s l ( m / n )  contains a u(1) 
generator h such that 

[ h, X I  = j x  forxELj, jE{-l ,O,+l} 

where L - , O  LOO L+l is the previously mentioned Z gradation. An explicit expression 
for h is given by 

n-1 n 
h =- i H i - -  2 ( n - i ) H , , , + i .  n - m  i = l  n - m  i s ,  

For s1(3/2) we find 

h = -2( HI + 2H2 + 3 H3) + 3H4. 

(5.7) 

Every dominant integral weight A with labels ( a , ,  a2 ,  a , ,  a,) is also the highest weight 
of an irreducible LG module V " ( A ) .  This module P ( A )  is characterised by the sI(3) 
Cartan-Dynkin labels ( a l ,  a,), the sl(2) label (a4) and the eigenvalue of the u(1) 
generator k = -2(a, +2a2+3a,)+3a4.  Hence, P ( A )  is determined by the following 
set of labels: 

( a , ,  42/a4/k). (5.9) 
Let A be the highest weight with labels (l,O, 0 , l ) .  Clearly A satisfies exactly one of 
the atypicality conditions, namely (5 .6 (5) ) .  Obviously, (4.7) is not fulfilled. However, 
after some lengthy calculations, we find that (4.31) gives rise to the following Lo module 
structure of V(A) (in the notation of (5.9)): 

(1,0/1/1)O(O,O/2/O)O(O, O/O/O)O(l, 1/O/O)O(O, 1/1/-1). (5.10) 

Thus, (4.31) yields the correct character formula. Indeed, (1, 0, 0, 1) is the adjoint 
representation of s1(3/2): ( l ,O/ l / l )  is sl,Osl: (with u(1) value + l ) ,  (0,0/2/0) is the 
three-dimensional adjoint representation of s1(2), (0, O/O/O) represents U (  l ) ,  (1,1/0/0) 
is the eight-dimensional sI(3) representation and (0, 1/ 1/-1) is the six-dimensional 
s1(3)Os1(2) irrep s l ~ O s l ,  (with u(1)-value -1).  

This example (and some other examples studied by the author) argues that, although 
the proof of (4.31) is not valid for 'low lying' representations, the final character 
formula of theorem 2 is true for all single-atypical representations. 

Acknowledgments 

The author would like to thank the referees for pointing out some errors in the first 
version of the manuscript and for stimulating comments and suggestions. Moreover, 
one of the referees indicated some interesting parallel work of Thierry-Mieg (1984a, b). 



824 J Van der Jeugt 

Note added in revision. It was pointed out by the referee that the definition of the mapping A after equation 
(4.24) is not completely convincing. For example, i f  9x, = q 'x ,  for 9 f 9' .  one has to show that this implies 
qAx, = q'Ax,. I t  would be natural to seek for an alternative definition of the mapping A where its properties 
are unambiguously clear but we have been unsuccessful in such an attempt. 
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